teration(迭代)

迭代是Python最强大的功能之一,是访问集合元素的一种方式。

只要是可迭代对象(Iterable),就可以通过for循环来遍历,这种遍历我们称为迭代。

也就是说所有可作用于for循环的对象都是可迭代对象(Iterable)。

那么,如何判断一个对象是可迭代对象呢?方法是通过collections模块的Iterable类型判断:

>>> from collections import Iterable
>>> isinstance(123,Iterable)            # Integer 不可迭代False>>> isinstance('abc',Iterable)          # String 可迭代True>>> isinstance([1,2,3],Iterable)        # List 可迭代True>>> isinstance(('a','b','c'),Iterable)  # Tuple 可迭代True>>> isinstance({'name':'Arno','Job':'Ops'},Iterable)    # Dictionary 可迭代Truepython

dict 迭代说明

默认情况下,dict迭代的是key:

>>> d = {'Name':'Arno','Born':1993,'Job':'Ops'}
>>> for k in d:...     print(k)... NameBornJobpython

如果要迭代value,可以用for value in d.values():

>>> for v in d.values():...     print(v)... Arno1993Opspython

如果要同时迭代key和value,可以用for k, v in d.items():

>>> for k,v in d.items():...     print('key:', k, '\t', 'value:', v)... key: Name      value: Arnokey: Born      value: 1993key: Job      value: Opspython

知识扩展

在Python中,List元素是有索引的,那么如何实现类似Java那样的下标循环?

方法一,通过len()方法取得列表长度,再结合range()方法实现索引下标循环:

>>> L = ['a','b','c']>>> for i in range(len(L)):...     print(i, L[i])... 0 a1 b2 cpython

方法二,Python内置的enumerate函数可以把一个list变成 索引-元素 对,这样就可以在for循环中同时迭代索引和元素本身:

>>> for i,v in enumerate(L):...     print(i, v)... 0 a1 b2 cpython

iterator(迭代器)

迭代器是一个可以记住遍历的位置的对象。

  • 迭代器对象从集合的第一个元素开始访问,直到所有的元素被访问完结束;
  • 迭代器只能往前不会后退;

迭代器有两个基本的方法:

  • iter()
  • next()

可以通过 collections 模块的 Iterator 类型判断一个对象是否是迭代器:

>>> from collections import Iterator
>>> isinstance([1,2,3], Iterator)False
>>> isinstance({'Name':'Arno','Born':1993,'Job':'Ops'}, Iterator)False
>>> isinstance('abc', Iterator)False
>>> isinstance(iter([1,2,3]), Iterator)             # iter()创建迭代器对象True
>>> isinstance((x for x in range(10)), Iterator)    # 生成器Truepython

可以看出,生成器(generator)都是迭代器(Iterator)对象,但String、List、Tuple、Dict虽然是可迭代对象(Iterable),却不是迭代器(Iterator)。

当然,String、List、Tuple、Dict等可迭代对象都可用于创建迭代器:

>>> L = [1,2,3]
>>> it = iter(L)
>>> print(next(it))1
>>> print(next(it))2
>>> print(next(it))3
>>> print(next(it))     # 没有值可返回时,抛异常 StopIterationTraceback (most recent call last):  File "<stdin>", line 1, in <module>StopIteration
>>> python

迭代器对象常使用for语句进行遍历:

>>> L = [1,2,3]
>>> it = iter(L)
>>> for x in it:...     print(x, end=" ")... 1 2 3 python

也可以使用 next() 函数:

>>> import sys
>>> L = [1,2,3]
>>> it = iter(L)
>>> while True:...     try:...         print(next(it))...     except StopIteration:...         sys.exit()... 123python

generator(生成器)

创建生成器的方法:

  • 使用了 yield 语句的函数
    Generator 是一个用于创建迭代器的简单而强大的工具。 它们的写法类似标准的函数,但当它们要返回数据时会使用 yield 语句。 每次对生成器调用 next() 时,它会从上次离开位置恢复执行(它会记住上次执行语句时的所有数据值)。
  • 使用生成器表达式,就是把一个 列表生成式 的[]改成()
    某些简单的生成器可以写成简洁的表达式代码,所用语法类似列表推导式,将外层为圆括号而非方括号。 这种表达式被设计用于生成器将立即被外层函数所使用的情况。 生成器表达式相比完整的生成器更紧凑但较不灵活,相比等效的列表推导式则更为节省内存。

yield 函数生成器

在 Python 中,使用了 yield 的函数被称为生成器

跟普通函数不同的是,生成器是一个返回迭代器的函数,只能用于迭代操作,更简单点理解生成器就是一个迭代器。

在调用生成器运行的过程中,每次遇到 yield 时函数会暂停并保存当前所有的运行信息,返回yield的值。并在下一次执行 next()方法时从当前位置继续运行。

实例,使用 yield 实现斐波那契数列:

import sysdef fibonacci(n): # 生成器函数 - 斐波那契    
a, b, counter = 0, 1, 0    
while True:        
if (counter > n):             
return        yield a        
a, b = b, a + b        
counter += 1f = fibonacci(10) # f 是一个迭代器,由生成器返回生成while True:    try:        
print (next(f), end=" ")    
except StopIteration:        
sys.exit()
awk

列表生成式

列表生成式(List Comprehensions)也叫列表推导式,提供了一个更简单的创建列表的方法。

常见的用法:

  • 是把某种操作应用于序列或可迭代对象的每个元素上,然后使用其结果来创建列表;
  • 或者通过满足某些特定条件元素来创建子序列;

例如,创建一个平方列表,像这样

>>> squares = []
>>> for x in range(10):...     squares.append(x**2)...
>>> squares[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]python

可以改为

>>> list(map(lambda x: x**2, range(10)))[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]

等价于

# 列表推导式,更加简洁易读
>>> [x**2 for x in range(10)][0, 1, 4, 9, 16, 25, 36, 49, 64, 81]

增加特定条件

>>> [x**2 for x in range(10) if x % 2 != 0][1, 9, 25, 49, 81]

创建为生成器

>>> (x**2 for x in range(10) if x % 2 != 0)<generator object <genexpr> at 0x7f076f06e990>

知识扩展

lambda 表达式

lambda 表达式(有时称为 lambda 构型)被用于创建匿名函数。

表达式 lambda parameters: expression 会产生一个函数对象 。 该未命名对象的行为类似于用以下方式定义的函数:

def <lambda>(parameters):    return expression

注意:通过 lambda 表达式创建的函数不能包含语句或标注。

map() 高阶函数

接收两个参数,一个是函数,一个是可迭代对象(Iterable),map将传入的函数依次作用到序列的每个元素,并把结果作为新的iterator(迭代器)返回。

总结

  • 迭代(iteration)是访问集合元素的一种方式;
  • 迭代器(iterator)对象一定是可迭代对象,反之则不一定;
  • 可迭代对象(Iterable)不一定是迭代器;
    例如list、dict、str等集合数据类型是可迭代对象,但不是迭代器,但是它们可以通过iter()函数生成一个迭代器对象。
  • 生成器(generator)对象既是可迭代对象也是迭代器;

遍历方式

  • 迭代器、生成器和可迭代对象都可以用for循环去迭代
  • 生成器和迭代器还可以被next()方函数调用并返回下一个值